
The data centers and high-performance computers that run artificial intelligence programs, such as large language models, aren’t limited by the sheer computational power of their individual nodes. It’s another problem — the amount of data they can transfer among the nodes — that underlies the “bandwidth bottleneck” that currently limits the performance and scaling of […]

New research revealing how honeybees can make fast and accurate decisions, which could help to design more efficient robots and autonomous machines, has been published by scientists at the University of Sheffield. The post Honeybees Make Rapid, Accurate Decisions and Could Inspire Future of AI, Study Suggests appeared first on HPCwire.

Transcription factor IIH, or TFIIH, pronounced “TF two H,” is a veritable workhorse among the protein complexes that control human cell activity. It plays critical roles both in transcription — the highly regulated enzymatic synthesis of RNA from a DNA template — and in the repair of damaged DNA. But how can one protein assembly […]

A research team from the University of California, Santa Cruz, have used the Oak Ridge Leadership Computing Facility’s Summit supercomputer to run one of the most complete cosmological models yet to probe the properties of dark matter — the hypothetical cosmic web of the universe that largely remains a mystery some 90 years after its existence […]

New theoretical research proves that machine learning on quantum computers requires far simpler data than previously believed. The finding paves a path to maximizing the usability of today’s noisy, intermediate-scale quantum computers for simulating quantum systems and other tasks better than classical digital computers, while also offering promise for optimizing quantum sensors. The post LANL […]

As artificial intelligence (AI), machine learning (ML), and simulation revolutionize the way humans process and predict information, Ansys Chief Technology Officer Dr. Prith Banerjee explains how better, faster decisions are made possible when these transformational sciences align. The post How Artificial Intelligence, Machine Learning, and Simulation Work Together appeared first on HPCwire.

A new theoretical study provides a framework for understanding nonlocality, a feature that quantum networks must possess to perform operations inaccessible to standard communications technology. By clarifying the concept, researchers determined the conditions necessary to create systems with strong, quantum correlations. The post UIUC Researchers Establish Criterion for Nonlocal Quantum Behavior in Networks appeared first […]

The U.S. Department of Energy’s (DOE) Argonne National Laboratory is building one of the nation’s first exascale systems, Aurora. To prepare codes for the architecture and scale of the new supercomputer, 15 research teams are taking part in the Aurora Early Science Program (ESP) through the Argonne Leadership Computing Facility (ALCF), a DOE Office of […]

A new approach to developing semiconductor materials at tiny scales could help boost applications that rely on converting light to energy. A Los Alamos-led research team incorporated magnetic dopants into specially engineered colloidal quantum dots — nanoscale-size semiconductor crystals — and was able to achieve effects that may power solar cell technology, photo detectors and […]

Over the past decade, teams of engineers, chemists and biologists have analyzed the physical and chemical properties of cicada wings, hoping to unlock the secret of their ability to kill microbes on contact. If this function of nature can be replicated by science, it may lead to products with inherently antibacterial surfaces that are more […]