
Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have recently demonstrated an automated process for identifying and exploring promising new materials by combining machine learning (ML) — a type of artificial intelligence — and high performance computing. The new approach could help accelerate the discovery and design of useful materials. Source: Savannah […]

Research into quantum engineering may provide a number of significant advancements in sensor technology, but optical loss and signal noise have – until recently – held these applications back. In “Realistic model of entanglement-enhanced sensing in optical fibers” published in Optics Express earlier this year, the Optics and Photonics Research Group at CU Boulder and their partners predict […]

Several months into the COVID-19 pandemic, those outside the biomedical community were reminded of a term many likely had not heard since their biology courses in their teenage years: messenger RNA, or mRNA. mRNA is normally involved in transcribing and translating the important genetic information contained in DNA to produce proteins—the key class of molecules […]

The past several years have been an exciting time in quantum computing. Billions of dollars have been invested, and there’s no shortage of advocates and detractors. Activity and momentum across the quantum community continue to grow. For proof, there have been a lot of recent headlines about increased qubit counts, commercially viable systems, roadmaps and […]

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the wariness of quantum computing felt by significant portions of the HPC community and the enthusiasm felt by those directly involved in quantum computing development. The post Quantum […]

Researchers at Penn Engineering have created a chip that outstrips the security and robustness of existing quantum communications hardware. Their technology communicates in “qudits,” doubling the quantum information space of any previous on-chip laser. Source: Devorah Fischler, University of Pennsylvania The post Microlaser Chip Adds New Dimensions to Quantum Communication appeared first on HPCwire.

The Sun is much more than just a source of light for Earth – it’s a dynamic and complex star, with storms, flares, and movement causing it to change constantly. Magnetic fields govern most of the solar activity we can observe but how they do this is still poorly understood. New results based on simulations […]

Quantum computers promise significantly shorter computing times for complex problems. But there are still only a few quantum computers worldwide with a limited number of so-called qubits. However, quantum computer algorithms can already run on conventional servers that simulate a quantum computer. A team at Helmholtz-Zentrum Berlin (HZB) has succeeded to calculate the electron orbitals […]

Whether developing new technologies for landing on other planets, improving air travel here at home, or more realistically simulating global weather and climate, supercomputing is key to the success of NASA missions. These advances and more were on display in the agency’s hybrid exhibit during SC22, the International Conference for High Performance Computing, Networking, Storage […]

For the first time, scientists have entangled atoms for use as networked quantum sensors, specifically, atomic clocks and accelerometers. The research team’s experimental setup yielded ultraprecise measurements of time and acceleration. Compared to a similar setup that does not draw on quantum entanglement, their time measurements were 3.5 times more precise, and acceleration measurements exhibited […]